
RL-TR-93-80 AD-A267 248
Final Technical Report illllllll111111i t1lllllf 1ll!lllfII
May 1993

CONFLICT RESOLUTION
(CORE) FOR SOFTWARE
QUALITY FACTORS

DTIC
ELECTE

Rochester Institute of Technology Q JUL 2 81993 1

Jeffrey A. Lasky, Kevin H. Donaghy A

APPROVED FOR PUBLIC lELEASA" D/STrRIBUT1N1 UNLIMITED.

'• 93-1683B

Rome Laboratory
Air Force Materiel Command

Griffiss Air Force Base, New York

S.e,

This report has been reviewed by the Rome Laboratory Public Affairs

Office (PA) and is releasable to the National Technical Information Service
(NTIS). At NTIS it will be releasable to the general public, including
foreign nations.

RL-TR-93-80 has been reviewed and is approved for publication.

APPROVED: ''1
ROGER J. DZIEGIEL, JR.
ProjecL Engineer

FOR THE COMMANDER:

JOHN A. GRANIERO
Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome
Laboratory mailing list, or if the addressee is no longer employed by
your organization, please notify RL (C3CB) Griffiss AFB NY 13441-5700.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or
notices on a specific document require that it be returned.

Form ApproveaREPORT DOCUMENTATION PAGE OMBNo.
P L•.c reportrg burden for &is' colecticon of rfo, ration Is egrat8ed toaverage I hW De response. r kicig the trmr for revewrig nstruacrs. seafc, -. , esirc: C; a

gahentJrg w mw•ar*Ig tte data needed andof frrg "n tevrewrng tt cokeaon of riorn xro n Send corrnrrs tegatdg tris ouroen estrfae or any otref i•.;:e f :

co~lecton a rforc r, raudri uw ggest s for reccrxg Iums budrw. to W9ash~on Heack*arers Servces. Drectorate for riforrmxon Coe,,atcs nd Peo s, 125 _ee'z.

Daws H!-Ig'WD, Sule 1204, ArOoR VA 22202-4302, and to t&e Offie of Marngwrwt a-•- Budget. Pap:worK Redulmt=, Prope (0704-0188) I WaSrqonr DC 2C523

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

May 1993 Final May 90 - Sep 92

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

CONFLICT RESOLUTION (CORE) FOR SOFTWARE QUALITY FACTORS C - F30602-88-D-0026
Task 36

6. AUTHOR(S)
PE - 62702F
PR - 5581

Jeffrey A. Lasky, Kevin H. Donaghy PR - 20

TA - 20
WI.U - PB

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Rochester Institute of Technology REPORT NUMBER

1 Lomb Drive

Rochester NY 14613-5700

9. SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 1 . SPONSORINGIMONITORING

Rome Laboratory (C3CB) AGENCY REPORT NUMBER

525 Brooks Road RI.-TR-93-SO

Griffiss AFB NY 13441-4505 1
11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Roger J. Dziegiel, Jr./C3CB (315) 330-2054

12a. DISTRIBUTION/AVAILABIUTY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT(Ma- 20 words)

"The software quality problem can be formulated as maximizing the quality 17oals within

the constraints of cost, schedule and technical feasibility. This is a difficult prob-

lem which belongs to a class known as multiobjective or multiattribute optimization

problems. These problems are characterized by the presence of muiLipie, conflicting

goals accompanied by a large candidate solution space. The goals conflict because they

are somehow interrelated.

In software development, there are several quality characteristics, or software quality

factors, that inherently conflict. For example, efficiency and maintainability conflict

and the objective is to improve code understandability, since efficiency frequently re-

quired reliance on exceptional code. The same is true for expandability and reliability

(increased risk to acquire more functionality), safety and availability (fail-soft/fail-

safe requirements reduce the set of available system capabilities).

"This effort developed a prototype tool which provides computer support for the Rome

Laboratory Software Quality Methodology. Conflict Resolution (CORE) determines whether

quality factor goals are achievable. If not, CORE then adjusts factor gnals until an

achievable solution is identified. In a session, there may be several candidato solu-

tions.
14. SUBJECT TERMS 15 NUMBER OF PAGES

software Wuality, Software Quality Specification, Metrics 52
16 PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION ý20. LIMITATION OF ABSTRACT

UNCLASS IF LED UNCLASSIFIED l1NC1LASS I F I11 it /Il

NSN 7540.01.280-55M Starxard Fcffý 9 ?S `P
Prsu De by AN', S ,' 8
296-w •e

TABLE OF CONTENTS

I EXECUTIVE SUMMARY
1 INTRO DUCTION ... I-1
2 BACKG ROU ND ... I-1
3 PRESENT STU DY ... I-I
4 CONTRA CT RESULTS .. I-I

4.1 Q uality driven process architecture .. I-1
4.2 Resolution of quality factor conflicts .. 1-2

H QUALITY DRIVEN SOFTWARE DEVELOPMENT
PROCESS ARCHITECTURE

1 INTRODUCTION .. 11-1
2 PROCESS ARCH ITECTURE .. 11-1

2.1 Basic elem ents ... 11-1
2.2 D om ain Analysis ... 11-2
2.3 Specification of quality requirem ents .. 11-2
2.5 Cost/schedule feasibility analysis .. 11-2
2.6 Process generation ... 11-3
2.7 Process validation .. 11-3

3 SU M M ARY .. 11-3

mI RESOLUTION OF QUALITY FACTOR TRADEOFFS
1 INTRO DUCTION .. 111-1

1.1 The software developm ent problem .. 111-1
1.2 The software quality problem .. 1. I -1
1.3 Conflict resolution ... 1[1-1

2 PRIO R W ORK .. 111-2
2.1 Softw are Q uality Fram ework .. 111-2
2.2 Assistant for Specifying the Quality of Softw are .. 111-4

3 OVERVIEW of CORE ... 111-5
3.1 Input ... 111-5
3.2 Processing .. 111-5
3.3 Execution Tim e: ... 111-7
3.4 Criteria ... 111-7
3.5 Quantifying Factor Interrelationships .. 11-8
3.6 Factor M inim a ... 111-10

4 Sam ple Session w ith CORE .. 111-10
5 RECOMMENDED ENHANCEMENTS to CORE .. 111-34

IV REFERE NCES .. IV -1

Accesion For

NTIS CRA&I

, -. ., 5 DTIC TAB UUriannou;;ced []
Justification,

By............

Distributioi!

Avail .i d (or

Dist Special

Si_

SECTION I

EXECUTIVE SUMMARY

1 INTRODUCTION

This technical report represents the results of the System Quality Attributes Study. This
work was performed for Rome Laboratory (RL) by Rochester Institute of Technology (RIT)
under contract no. F30602-88-D-0026.

2 BACKGROUND

This effort continues work related to the software quality research program sponsored by
Rome Laboratory (formerly Rome Air Development Center) since 1976. RIT's prior
contract results are reported in Software Quality Measurement Methodology Enhancements
Study Results [1] and in Software Quality Methodology Study Results [2].

3 PRESENT STUDY

The objective of the present study is to extend the results of prior work. One of our
study's principal aims was to define a software development process architecture from a
software quality perspective.

The other principal aim was to implement a proof-of-concept tool designed to support
the resolution of software quality factor conflicts. The current implementation of the
Assistant for the Specification of Quality Software [3] does not completely address the
quality factor conflict problem.

4 CONTRACT RESULTS

4.1 Quality driven process architecture

We have defined a quality driven software development process architecture. The novel
feature of the architecture is that it explicitly links software product quality goals to the
software development process. We have thus potentially supplied an answer to a question of
current intense interest: how should the software development process be defined in order to
meet specific software product quality requirements?

The basic elements of the architecture are:

1. A software quality domain analysis.

2. A method for deriving quality requirements from the domain analysis.

3. A method for validating the derived quality requirements against technical
feasibility constraints.

4. A method for determining whether the validated quality requirements can be
achieved given cost and schedule constraints.

I- 1

5. A process generator that produces a development process to meet the validated
quality requirements. The development process is composed of an ordered
sequence of development tasks, or subprocesses

6. A set of process validations specific to each development subprocess.

Since the development process has been derived by product quality requirements, and
the derived process measures are designed to validate correct process execution, compliance
with the measures is equivalent to compliance with the product quality requirements. Such
compliance represents the link between software product quality requirements and the
software development process itself.

4.2 Resolution of quality factor conflicts

We have implemented CORE (COnflict REsolution), a working prototype tool which
provides computer support to Rome Laboratory's Software Quality Methodology [4]. The
problem which we have initially addressed is to determine if a set of software quality factor
goals is technically achievable, given the factor and criteria interrelationships specified in
Volume II of [4]. If CORE determines that the quality factor goals are not achievable, CORE
then adjusts factor goals until an achievable solution (a feasible set of quality goals) is
identified. In practice, CORE typically finds several candidate solutions.

This quality factor problem belongs to a large class of problems collectively known as
multiobjective or multiattribute optimization problems. These problems are characterized by
the presence of multiple, conflicting goals accompanied by a large candidate solution space.
The goals conflict because they are somehow interrelated. Thus, another characteristic of
this problem class is that attempts to improve one objective, by reallocating resources from a
common resource pool, will usually degrade some other interrelated objective(s).

In software development, there are several software quality factors that inherently
conflict. For example, efficiency and maintainability conflict if the objective is to improve
code understandability, since efficiency frequently requires reliance on exceptional code.

We successfully applied CORE to the Surveillance and Identification function of the
Airborne Radar System example used in Volume II of [4]. A sample session which
illustrates the capabilities of CORE is included in section III of this report.

1-2

SECTION II

QUALITY DRIVEN
SOFTWARE DEVELOPMENT PROCESS ARCHITECTURE

1 INTRODUCTION

Over the past several years, there has been a dramatic increase in studying and
improving the software development process. The hypothesis underlying the interest in
process is that improvements in the software development process will translate into higher
quality software products. Based on field experiences reported to date, it seems likely that
the hypothesis gcanerally will be demonstrated true. To date, the evidence has, for the most
part, been a reduction in the number of field failures experienced by users. However, a
corollary question will be of more immediate interest to those responsible for planning and
managing software development projects: how to design a software development process to
meet the full spectrum of potential product quality goals.

This section describes a quality driven software development process architecture which
explicitly links software product quality goals to the software development process. Several
elements of Rome Laboratory's long-standing software quality research program are
incorporated in the framework.

2 PROCESS ARCHITECTURE

2.1 Basic elements

The basic elements of the architecture are:

1. A software quality domain analysis.

2. A method for deriving quality requirements from the domain analysis.

3. A method for validating the derived quality requirements against technical
feasibility constraints.

4. A method for determining whether the validated quality requirements can be
achieved given cost and schedule constraints.

5. A process generator that produces a development process to meet the validated
quality requirements. The development process is composed of an ordered
sequence of development tasks, or subprocesses

6. A set of process validations specific to each development subprocess.

Since the development process has been derived by product quality requirements, and
the derived process measures are designed to validate correct process execution, compliance
with the measures is equivalent to compliance with the product quality requirements. Such
compliance represents the link between software product quality requirements and the
software development process itself.

Il-1

2.2 Domain Analysis

A domain analysis can be viewed as systems analysis applied to a family of related
programs (the domain). A domain model is the primary output of a domain analysis. The
model is an abstract representation of the domain's logical and physical requirements.
Initially, domain analysis was undertaken in order to identify commonalties of functions,
designs and source code. The results formed the basis for libraries containing reusable
software components. Current perspective is that domain analysis should provide the
foundation for the reuse of software development products from all phases of the
development life-cycle [5].

Rome Laboratory applied the domain analysis concept in order to determine the software
quality requirements for five Air Force mission areas. The most detailed quality
requirements were derived for the satellite mission area. Although the analysis was difficult
and time-consuming, the results suggest that a software quality requirements domain analysis
provides deep insights into the domain's generic quality characteristics [6].

2.3 Specification of quality requirements

Using the software quality domain analysis as a baseline, the quality requirements for a
specific proposed system in the domain are then derived. Rome Laboratory developed an
expert system, the Assistant for the Specification of Software Quality (ASQS) [3] to support
the activity of determining software quality requirements. This activity can also be carried
out manually, although the complexity of the task is considerable. Information from several
sources is combined with the baseline domain analysis to produce an initial quality
requirements specification. The quality requirements are stated in terms of a quantitative
goal for each key software quality factor [4].

2.4 Technical feasibility analysis

Software quality factoes are not technically independent. In some cases, it is presumed
not feasible to achieve, for general design and technical reasons, simultaneously high levels
of quality for several quality factors in the same product. Thus, it is necessary to subject the
software quality requirements specification to a feasibility analysis.

In section III, Resolution of Quality Factor Conflicts, we describe an initial
implementation of CORE (Conflict Resolution), a tool that checks the initial quality
specification for technical feasibility. If the results suggest that the specification is not
achievable according to the sets of interrelationship rules, then the tool lowers the values of
certain quality factors until a feasible set(s) of quality specifications are identified. Based on
the alternatives generated by the tool, the initial quality specification is then modified.

2.5 Cost/schedule feasibility analysis

Since resources are always limited, it may not be feasible to achieve quality
requirements. Thus, it is necessary to analyze the current quality specification in light of cost
and schedule constraints. Since software development projects are notoriously non-linear in
use of time and resources, the method of feasibility analysis should be able to capture the
dynamics of software development projects.

The systems dynamics modeling approach has been successfully applied to a NASA [7]
and later to a USAF software development project [8]. The costs and schedule requirements
of development technologies related to software quality objectives are determinable, with

11-2

research, for individual quality technologies. The existing models can then be modified to
incorporate the inclusion of these additional project factors. A simulation will then show the
impacts of the quality technologies on overall project cost and schedule. If the results show
that cost and schedule constraints are being violated, then the quality specification can be
further modified until an acceptable tradeoff between quality, cost and schedule is identified.

2.6 Process generation

Once a final software quality requirements specification has been created, then
conceptually a development process can be automatically generated from a database of
process fragments. The generated process, then, will directly reflect the software's quality
requirements. Initial work on identifying and defining process fragments has been conducted
under the sponsorship of IEEE Working Group P- 1074. Although this particular set of
process fragments does not generally include the scope of quality technology fragments
envisioned here, it does represent an important starting point. A subset of these fragments
has already been incorporated in a process modeling tool [9]. Process modeling in general is
a very active area within the software engineering community [10]. A detailed process
description of one software quality technology, Cleanroom Engineering, has recently become
available [11].

For use in the type of process generation envisioned here, each quality technology
process fragment definition would include normalized standard cost and standard schedule
resource requirements. The most likely normalizations would be software size or function
points. The same normalized cost and schedule data are used by the cost/schedule feasibility
analysis described in section 2.5 above.

2.7 Process validation

The validations are expressed in the ETVX paradigm [12]. An ETVX description for
each development subprocess, or activity, is composed of activity ENTRY criteria, TASK
descriptions, VALIDATION criteria, and EXIT criteria. This approach is essentially a
project control structure which has the property of (nearly) isolating problems until they are
resolved. In practice, it represents one approach to continuous monitoring of product
development.

For use in the type of process generation envisioned here, each quality technology
process fragment definition would also include associated ETVX definitions.

3 SUMMARY

This section has presented a development architecture that incorporates an explicit link
between software development process and software product quality. The link is provided by
adjusting the development process to incorporate quality requirements in terms of quality
factor levels and the associated developmental resources needed to correctly perform quality
technology subprocesses. Validation of quality technology subprocesses is performed within
the ETVX paradigm, and thus provides a high level of assurance that validation criteria will
reflect specific quality requirements.

11-3

SECTION III

RESOLUTION of QUALITY FACTOR CONFLICTS

1 INTRODUCTION

1.1 The software development problem

The software development problem may be formulated as a problem in optimization where
the objective function is:

[min (cost, schedule), max (quality)],

subject to I [requirements, resources, time and technology].

This is clearly an enormously difficult problem, one for which no optimal solution
currently exists and for which none may ever be discovered. We have selected to study a
subset of this problem, namely max (quality).

1.2 The software quality problem

The software quality problem can also be formulated as a problem in optimization:

max [quality goals]

subject to [technical feasibility, cost, schedule]

This also is a difficult problem which belongs to a class known as multiobjective or
multiattribute optimization problems. These problems are characterized by the presence of
multiple, conflicting goals accompanied by a large candidate solution space. The goals conflict
because they are somehow interrelated. Another characteristic of this class is that no
reallocation of resources can be made which will improve one objective without degrading at
least one other objective as well. Due to this later characteristic, the solutions are known as
non-dominated solutions. In the specific case of software quality goals, the non-dominance
property may be relaxed in some cases but the spirit of the concept remains applicable.

In software development, there are several quality characteristics, or software quality
factors, that inherently conflict. For example, efficienc:" and maintainability conflict if the
objective is to improve code understandability, since efficiency frequently requires reliance on
exceptional code. The same is true for expandability and reliability (increased risk to acquire
more functionality), safety and availability (fail-soft/fail-safe requirements reduce the set of
available system capabilities) and so on.

1.3 Conflict resolution

Determination of technical feasibility has been selected as a first research goal. Later, we
plan to also incorporate cost and schedule feasibility considerations. We have started
development of QUMAX, a set of tools to support planning and analysis procedures leading to
QUality MAXimization. The development of QUMAX was recommended in our prior work as
part of a software quality research architecture [2]. Our initial effort has produced a working
prototype tool CORE (COnflict REsolution), which provides the following capabilities:

III-1

"* Accepts as input ar, existing quantitative quality specification and checks the
specification for technical feasibility. A quality specification is a set of quality
factors together with a quantified level of desired quality for each factor in the set.

" If the initial quality specification is consistent (feasible), then no further action need
be taken; otherwise, the user must adjust the quality specification. A consistent
quality specification is one which does not violate the rules defining the nature and
magnitude of factor interrelationships.

"• The modified quality specification is checked for technical feasibility. If the

specification is not feasible, then CORE will search for a feasible solution(s).

2 PRIOR WORK

2.1 Software Quality Framework

The program of software quality research funded by Rome Laboratory (formerly Rome
Air Development Center) is based on a Software Quality Framework. The framework is the
principal component of the Software Quality Methodology. This methodology defines
procedures (a) for specifying prior to development a system's key quality factors and
quantified factor goals, (b) for performing a technical feasibility and cost impact study, (c) for
measuring the quality of intermediate software products, and (d) for measuring the actual
achieved quality in the delivered software product. The Software Quality Methodology is
defined in a three volume set of guidebooks entitled "Specification of Software Quality
Attributes" [4]. The key concept of the framework is a three level hierarchical model of
software quality.

]Factors]

"Crtei'n Criterion rtin

Metrics Metrics Metrics

Measures Measures Measures

Software Quality Model. The level under the gray bar is
usually not viewed as an additional level.

The top level is a set of thirteen customer-oriented software quality factors. The factor
set is Efficiency, Integrity, Reliability, Survivability, Usability, Correctness, Maintainability,
Verifiability, Expandability, Flexibility. Interoperability, Portability, and Reusability. The
reader should keep in mind that the quality factors are not perfectly orthogonal; important
relationships exist among the factor set.

111-2

In the current version of the Software Quality Framework, three levels of factor goals are
identified: excellent, good and average. For quantitative goal setting, excellent is mapped into
.90 to 1.00, good into .80 to .89, and average into .70 to .79. The role of these factor goals in
the overall methodology is considerable. For example, at the end of the development, a score
is calculated, in the range of 0.0 to 1.0, which represents how much of a certain quality factor
is actually present in the final product. That final score is then compared to the target goal for
that factor to determine if the contractor has meet requirements.

The second level is a larger set (twenty-nine) of defining attribute's for the software
quality factors. These are termed software quality criteria and reflect technical (developer)
considerations of good software engineerir.g and development practice. For example, the
RELIABILITY software quality factor is defined in terms of three software quality criteria:
accuracy, anomaly management and simplicity. Some criteria are used in the definition of more
than one factor. The reader should keep in mind that the quality criteria are not perfectly
orthogonal; important relationships exist among the criteria set.

The complexity of quality factor/quality criteria interrelationships is apparent in figure
shown below which is a representation of interrelationships for the FLEXIBILITY quality
factor. This form of representation was developed by others in the course of conducting a
prior assessment of the framework [13].

1
FACTOR CRITERIA

Cc-rectness Consistency
Maintainability Interoperability Traceabilty

F Generality Positive
Sexibity . Modularity . . - - a

(Ease of Change) Self-Descript. Negative
Simplicity

Survivability Enei ency I ReconfigurabilityIntegrity
Reliability

Factor/Criteria Interrelationships for FLEXIBILITY

Figure 2 depicts seven types of relationships:

1. Positive factors impacting FLEXIBILITY (Correctness, Maintainability)

2. Negative factors impacting FLEXIBILITY (Survivability)

3. Positive criteria impacting FLEXIBILITY (Consistency, Traceability)

4. Negative criteria impacting FLEXIBILITY (Reconfigurability)

III-3

5. FLEXIBILITY positively impacting other factors (Interoperability)

6. FLEXIBILITY negatively impacting other factors (Efficiency, Integrity, Reliability,
Survivability)

7. Criteria which define FLEXIBILITY (Generality, Modularity, Self-Descript,
Simplicity)

If one were to produce a set of connected graphs for the complete set of quality factors and
quality criteria were shown, it would be clear that summation over all criteria, factor and
criteria/factor relationships produces a highly complex web of software quality
interrelationships.

The explicit recognition of technical interrelationships among factors and between factors
and criteria in the Software Quality Framework is unique among software quality models. It
provides the basis for a systems engineering approach for specifying software quality
requirements.

These technical relationships are either positive (beneficial) or negative (adverse). At the
factor level, if factor X positively impacts factor Y, then the presence of factor X will increase
the likelihood of achieving the desired quality goal for factor Y. If the indicated relationship is
negative, then the presence of Factor X will increase the difficulty of achieving the desired
quality goal for Factor Y. For example, their is a defined negative relationship between the
factors Efficiency and Maintainability. That means that it will be difficult to achieve the target
goals if both factors are assigned a level of Excellent (High). The rationale is that high
hardware efficiency is often obtained by use of programming practices which impair future
maintainability. The Software Quality Framework also defines the relative strength of the
interrelationships in terms of degree of impact. Not all pairs of factors are interrelated. If they
were, a nearly optimal tradeoff resolution of factor conflicts would be virtually impossible. In
many cases, the impact is one to many, so that factor Y above could also represent a set of
factors. Similar reasoning applies to interrelationships between factors and criteria.

2.2 Assistant for Specifying the Quality of Software

The Rome Laboratory software quality research program also developed a tool to provide
assistance during the process of developing a quality goal specification. The Assistant for the
Specification of Software (ASQS) is an expert system whose principal objective is to facilitate
the transition of the Software Quality Methodology into acquisition management practice. The
underlying strategy to accomplish this objective was to provide facilities which partially
automated the software quality specification process as outlined in Guidebook Volume 11. The
ASQS was developed by Dynamics Research Corporation during the period 1985-1990. The
current version of ASQS should be considered a proof-of-concept demonstration. Interested
readers should consult the ASQS Operational Concept Document [31 and the ASQS User's
Manual [14].

The rationale which lead to the development of the ASQS was that system acquisition
managers are typically unfamiliar with software quality concepts and technology. So, they
would need assistance in translating their knowledge of software-intensive system
characteristics and requirements into a software quality specification. In addition, the technical
and feasibility and cost impact analyses, which are an integral component of the Software
Quality Methodology, would likely be sufficiently comple-i that computer support would be
required for all but the simplest systems.

111-4

The ASQS implementation of the technical feasibility and cost impact analyses was
incomplete. The development of CORE is an attempt to begin to complete the ASQS proof-of-
concept demonstration. CORE is presently a standalone system and their are no plans to
integrate CORE into the existing ASQS.

3 OVERVIEW of CORE

CORE (COnflict REsolution) is a decision support system for identifying and resolving
critical software quality factor conflicts. CORE implements an interpretation of the Software
Quality Methodology described in Volume II of [4]. Knowledge about factor and criteria
interrelationships contained in Volume II have been encoded into CORE as sets of Prolog facts.
CORE was originally developed in C-Prolog, an interpretive Prolog development language.
Subsequently, CORE was ported to MacProlog, a Prolog development system which generates
compiled code. A Macintosh interface was also developed for CORE using the MacProlog
development environment.

This section, which assumes a basic familiarity with the contents of Volume II, consists of
a description of CORE, a scenario which follows the Airborne Radar System example
contained in Volume II, and the corresponding output report. The example system is described
in Table 4.1.1-1, Characteristics and Functions for Example System, page 4-10. All page and
table references are to Volume II of Specification of Software Quality Attributes.

3.1 Input

A user may select any of the initial factor goal sets listed in Table 4.1.2-7, Software
Quality Factor Identification Form-Initial Goals, page 4-24, or may modify any of the initial
goal sets. Similarly, the user may use any of the default factor formulas listed in Table 4.2-1,
Criteria Weighting Formula Form-Initial Weighting, page 4-64, or the user may modify the
criteria weights of the default formulas. Finally, the user may initialize any subset of criteria to
values which the user considers minimally acceptable.

3.2 Processing

After the input phase has been completed, CORE:

(1). computes the values of criteria which have not been initialized by the user and lists all
formulas and constituent criteria values for the user's inspection.

(2). computes the adverse effects of factors on each other,

(3). computes the beneficial effects of factors on each other,

(4). lists all factors together with their actual and maximum permissible (achievable) values.

(5). For any factor F whose actual value exceeds its achievable maximum, the system:

(a) lists all factors which negatively impact F,

(b) determines the extent of impact,

(c) lists the factor constituents (i.e. criteria) responsible for the negative impact,

(6). If no critical factor conflicts are uncovered, the session terminates. Otherwise, CORE
asks the user to optionally enter minimum acceptable values for any of the individual

11I-5

factors. CORE also takes a snapshot of the data base as it exists just after factor minima
have been assigned.

(7). CORE then initiates a search for solutions to factor conflicts. The general strategy is to
selectively reduce the values of factors responsible for conflicts.

(8). At this point, non-default minimum values (i.e., those factor minima set by the user),
become the actual values of those factors. (The rationale for this is discussed below; see
Factor Minima). The initial task is to determine whether the user has established minima
low enough to resolve the conflict. If so, there is no point in continuing the search for
solutions. Otherwise the following algorithm is implemented:

1. Identify the set of factors which are involved in the conflict. This is the conflict set.
In practice, this is the set consisting of the factor whose permissible maximum has
been exceeded together with all factors (and implicitly all criteria) which have an
adverse effect on that factor.

While no solution has been found or the user chooses to search for additional solutions:

2. For each member of the conflict set with a value of Excellent or Good,

a. reduce the factor value one level (to Good or Average),
b. recalculate all factor values, criteria values, and interrelationships,
c. determine whether the reduction of that factor was sufficient to resolve the conflict.
d. If yes, report details of the resolution and optionally continue the search.
e. If no, continue the search.

3. For each factor combination X,Y from the conflict set such that both X and Y have values
greater than Average, and neither X nor Y is by itself sufficient to resolve the conflict (see
step 2),

a. reduce the values of X and Y one level,
b. recalculate all factor values, criteria values, and interrelationships,
c. determine whether the reduction of X and Y was sufficient to resolve the conflict.
d. If yes, report details of the resolution and either continue or terminate the search at the

discretion of the user.
e. If no, continue the search.

4. Repeat step 3 for each combination X,Y,Z from the conflict set such that X, Y and Z
have above average values and no subset of X, Y and Z is sufficient to resolve the
conflict (see steps 2 and 3).

5. If the adversely affected factor is efficiency, continue the search using combinations of
four and then five factors. (No other conflict set is large enough to warrant this step.)

6. After the search phase has been completed, a report is generated for the user displaying a
snapshot of the data base at the time the conflict was discovered and describing solutions
discovered in the course of the search. Each solution includes explicit directions about
which factors to reduce and how to reduce them (from Excellent to Good or from Good
to Average.) In addition, each solution displays the factor values and maxima that would
result if that particular solution were adopted and if all factor interdependencies were
recalculated. A second report format provides a more detailed snapshot, including
formulas and the values of their component criteria as well as factors, values and
maxima.

1II-6

3.3 Execution Time:

Example CORE timing results were obtained on a 16 MB Mac IIfx and CORE
implemented in MacProlog. The search times are shown on program screens which display
candidate solutions to the example problem; see section 4.

3.4 Criteria

Criteria may be either shared by more than one factor or unique to a single factor. Default
values for shared criteria are 0.85 ('good' or 'moderately important'). Values for unique
criteria are computed from their factor values and shared criteria values. For example:

The formula for reliability is 0.4*ac + 0.3*am + 0.3*si. Suppose that reliability has been
assigned a value of 0.90, and that its two shared criteria, am and si, have the default value
0.85. The value of the unique criterion, ac, can then be determined to be 0.97, since 0.90 =
0.4*0.97 + 0.3*0.85 +0.3*0.85. Here is a general algorithm.

(1). Sum the weighted shared criteria.

(2). Subtract the result from the formula value.

(3). Subtract the weights of the shared criteria from 1.0.

(4). Determine the value of remaining criteria by dividing the results of steps 2 & 3, and
dividing that result by the number of remaining criteria.

It could (and often does) happen that the result of step 4 is greater than 1.0. This means
that there is no way of satisfying the formula unless (a) the shared criteria values are raised and
the unique criteria values lowered or (b) the factor value is lowered, or (c) the weights of the
shared criteria are lowered, those of the unique criteria raised, and the values of the unique
criteria lowered. (c) is the preferred course of action, since it is least likely to override the
preferences of the user. (c) is the method used in the current CORE implementation. The
system repeatedly reduces the shared weights by 0.05 until acceptable results are achieved.
Here is an example. Suppose that the desired value of the factor reliability is 0.95, and that the
values of its two shared criteria, anomaly management and simplicity, are the default values,
0.85 and 0.85. In this case its third (non-shared) criteria will have an initial computed value of
1.225, since:

Rel(0.95) = [ac](0.4)(1.225) + [am](0.3)(0.85) + [si](0.3)(0.85).

By repeatedly lowering the weights of am and si by 0.05, each time increasing the weight
of ac by 0.10, the following result is achieved:

Rel(0.95) = [ac](0.7)(0.99) + [am](0.15)(0.85) + [si](0.15)(0.85)

The advantage of this solution is that the factor value as well as the shared criterion values
remain unchanged. The disadvantage, of course, is that factor formula is modified, and
perhaps significantly so. This explains why default values for shared criteria are so high
(0.85). Lower values would result in formulas whose weights would be very different from
those specified in Volume II.

Before leaving this topic, one other situation is noteworthy. It could happen that all criteria
for a given formula have a value greater than 0 and yet the sum of the weighted criteria is not
equal to the value currently assigned to the corresponding factor. The system resolves the

I1-7

situation as follows. If the factor value is greater than the weighted criteria sum, the factor
value is reduced. But if the factor value is less than the weighted criteria sum, the values of the
component criteria are reduced.

The advantage of this method of resolution is that it is consistent with the way that such
inequalities typically arise. The system reduces factor values in an attempt to find solutions to
critical factor conflicts. When this happens, a proportional reduction in the criteria which
comprise those factors is clearly in order. But some of the lowered criteria may well be shared
by other factors, so that as a side effect, the weighted criteria sums of the corresponding factor
formulas will fall below the factor values. To avoid infinite regress, these factor values must
be reduced in such cases.

3.5 Quantifying Factor Interrelationships

Factor interrelationships implemented in this system are those to be gleaned from Table
4.1.3-1, Effects of Criteria on Software Quality Factors, page 4-26, together with Table
4.1.3-2, Positive Factor Interrelationships, pages 4-28 to 4-31, and Table 4.1.3-3, Negative
Factor Interrelationships, pages 4-32 to 4-33. Although adverse and beneficial relationships
cannot be quantified with great precision, CORE does succeed in closely simulating the two
major conflicts discussed in the text. Both examples assume the Surveillance and Identification
goal set.

Table 4.1.3-4, Factor Interrelationship Calculations, page 4-34, indicates that the
combined negative impact of the adaptation factors on efficiency is -10. However, since all
adaptation factors have a value of 'good' (0.80 - 0.89), the conflict is "not critical" (section
4.1.3.4, page 4-35). Table 4.1.3-4 also indicates that integrity, reliability, usability,
maintainability, and verifiability also have a combined negative impact on efficiency of- 10. But
in this case, the conflict "is critical", since the values for these factors is excellent (0.9 - 1.0).
"This situation.. .requires action because achieving the initial set of goals is not possible"
(section 4.1.3.4, page 4-35).

It follows that the effect of one factor on another depends both on the degree of impact
(ranging from 1 to 3) and the rank of the affecting factor (ranging from 0.7 (Average) to 1.0
(Excellent)). In light of this, the following scheme was adopted.

Assume that F1 negatively affects F2.

(1) If the value of F1 is in the excellent range, F1 reduces the maximum value of F2 by
0.015 * the degree of impact (1 - 3).

(2) If the value of Fl is in the good range, F1 reduces the maximum value of F2 by
0.0075 * the degree of impact (1 - 3).

(3) If the value of Fl is in the average range, F1 reduces the maximum value of F2 by
0.005 * the degree of impact (1 -3).

Applying these rules, the adaptation factors with a combined impact of -10, reduce the
potential maximum of efficiency to 0.925 (i.e. 1.0 - 10 * 0.0075). Since it is still possible to
achieve an excellent rating for efficiency, the conflict is not critical. On the other hand, the
excellent factors conflicting with efficiency, again with a combined impact of -10, reduce the
potential maximum of efficiency to 0.85 (i.e. 1.0 - 10 * 0.015). Hence this conflict is critical,
since it is not possible to achieve excellence among all factors involved in the conflict.

111-8

A troublesome question remains. Are the 'conflicts' under discussion independent
conflicts which can be considered in isolation as is, I think, suggested by the authors of
Volume II ; or are they instead two aspects of a single conflict involving efficiency on the one
hand and all factors which adversely affect efficiency on the other? We believe that the first
view is fraught with difficulty. For this reason, CORE has been designed to reflect the second
view.

At the time this particular conflict is discovered, CORE displays the following screen of
information.

Efficiency = 0.90 which exceeds the permissible maximum
0.78. The chart below lists factors which reduce maximum
efficiency from 1.00 to 0.78 together with their values and
the extent to which each contributes to the reduction.

Factor Ualue Percent
Integrity 0.90 3.00
Reliability 0.90 4.50
Usability 0.90 1.50
Maintainability 0.90 3.00
Verifiability 0.90 3.00
Expandability 0.80 3.00
Flexibility 0.90 1.50
Interoperability 0.80 3.00

The adaptation factors, expandability, flexibility and interoperability, reduce the maximum
permissible value of efficiency by 7.5%. Integrity, reliability, usability, maintainability and
verifiability reduce the maximum permissible value of efficiency by 15%. Thus the combined
impact of all factors which negatively affect efficiency is to reduce the maximum permissible
value of efficiency by 22.5% (rounded to 22% above). This implies that given the current
factor values, the maximum permissible value of efficiency is 0.78 (on a scale of 0.0 to 1.0).

Note that the actual value of flexibility is now 0.9, whereas it was initialized at 0.8. That is
because there exists a conflict at another level in the original goal set. The system recognized
this and made the appropriate adjustment. The problem here is that all constituent criteria of
flexibility are shared. To achieve the 0.9 factor values required by the Surveillance and
Identification goal set, the system had to assign very high values to the criteria generality,
modularity, self-descriptiveness and simplicity, among others. As a side effect, the value of
flexibility was sharply increased, since these are just the criteria which collectively define
flexibility. One strength of CORE is that it enforces constraints imposed by shared criteria

111-9

values on factor values, detecting and correcting violations of those constraints in a user's

choice of goal sets.

3.6 Factor Minima

After a critical factor conflict is uncovered, and just prior to initiating the search for conflict
resolutions, the user is allowed to set minimum values for factors. When a factor is assigned a
minimum value, its actual value is made equal to that minimum. In addition, the values of all
criteria within the formula for that factor are adjusted accordingly.

Setting a minimum value for a factor is a two edged sword. On the one hand, it guarantees
that the value will not fall below that minimum. On the other hand, it has the side effect of
making the actual value equal to the minimum value. For example, if the value for efficiency is
0.9 and the user at this point indicates that the minimum acceptable value is 0.85, the system
will reduce the value of efficiency to 0.85. This may appear extreme, but there is a good reason
for it. If the user wishes to resolve a factor conflict and has indicated a willingness to accept a
reduction in efficiency to 0.85, then why not facilitate the search for solutions by putting that
reduction into effect immediately. The user may accept the minimum only grudgingly, much
preferring a higher value for that factor. But there is a simple remedy at hand. Simply set the
minimum to that higher value and search for a resolution to the conflict given that more
stringent requirement.

Factor minima can be used to control and constrain searches. For example, suppose that
one wished to determine whether a particular conflict could be resolved by reducing factors X
and Y and leaving all others unchanged. Further suppose that X's value was Excellent and Y's
value Good. To test the hypothesis, one would

1. Choose "Set minima to Current Factor Values" from the factor minimum menu,
setting all minimum values to their actual factor values.

2. Then reduce X's minimum to 0.88 and Y's to 0.78.
3. Choose "Exit Menu"

Only one solution to the conflict is now possible and that is the one hypothesized.

A more flexible method for constraining searches permits one to determine whether a
solution can be found among some particular subset of factors, say X, Y and Z, without
lowering the values of factors outside that subset.

1. With the exception of X, Y and Z, set each factor minimum to its current value.

2. Choose "Exit Menu"

Now only solutions involving reductions in the three factors of interest will be considered.

4. Sample Session with CORE

The following sequence of screens illustrates a CORE session for the Surveillance and
Identification function of the Airborne Radar System example. The decision to lower the goal
of the efficiency quality factor is simulated in the CORE session. A detailed report of the
session results follows the sample session.

III-10

Choose a system Srellance ,'n Idetsification
function Threat Evaluation

Weapons Assignment Control
Battlestaff Management
Communications
Man-Machine Interface
Executive
Integrated Test Function
Missions Training
Custom Design
Display All Factor Values
Exit Menu

Figure 1. Select a system function.

This screen is used to select a factor goal set. The goal sets shown are taken from Table 4.1.1-1,
page 4-10. This example scenario is based on the Surveillance and Identification function.

Choose a system Surveillance and Identification 0
function Threat Evaluation

Weapons Assignment Control
Battlestaff Management
Communications
Man-Machine Interface
Executive
Integrated Test Function
Missions Training
Custom Design

Exit Menu

Figure 2A. Display all factor values.

This menu item will result in a display of the factor value set for Surveillance and Identification.

Ill-l11

Choose a sy ion
function

Factor Values

Efficiency 0.90
Integrity 0.90
Reliability 0.90
Suruiuability N/R
Usability 0.90
Correctness 0.90
Maintainability 0.90
Verifiability 0.90
Expandability 0.80 0
Flexibility 0.80
Interoperability 0.80
Portability N/A
Reusability N/A

Figure 2B. Initial factor values set.

CORE assigns a value of 0.90 to an initial quality goal of excellent and 0.80 to an initial quality
goal of good. The initial quality goals shown are taken from Table 4.1.2-7, page 4-24. N/A is not
important or not applicable.

Choose a system Surveillance and Identification
function Threat Evaluation

Weapons Assignment Control
Battlestaff Management
Communications
Man-Machine Interface
Executive
Integrated Test Function
Missions Training
C Isor Dir gn

Display All Factor Values
Exit Menu

Figure 3A. Custom Design.

This menu item provides a capability to modify initial baseline factor goals for any of the selected
factor sets.

111-12

Select a factor _
Integrity
Reliability

Enter a new value If
you wish:

%0.0 1

Display All Factor Values
Exit Menu

Figure 3B. Change factor goal values.

Sub-menu providing the capability to enter a new quality goal for the efficiency quality factor. The
baseline value for efficiency is displayed, and in this example, is not changed.

Salect a formula Efficiency
Integrity
Reliability
Survivabllity
Usability
Correctness

i # ; I i I ML

Verifiability
Expandability
Flexibility
Interoperability
Portability
Reusability
Display All Formulas
Exit Menu

Figure 4A. Select a formula.

This screen provides a capability to select a factor in order to modify criteria weights in the
factor formula. Criteria cannot be added or deleted.

Ill-13

Select a formula Efficiency
Integrity
Reliability
Survivability
Usability

Enter new criteria weights if you wish

maintainabillty - 0.2 * cs + 0.2 * us + 0.2 * mo + 0.2 * sd + 0.2 * sl

Display All Formulas

Exit Menu F u

Figure 4B. Modify criteria weights..

Sub-menu providing a capability to modify criteria weights. In this example, no criteria
weights are changed.

Select a formula Efficiency 0
Integrity

Reliability
Survivability
Usability
Correctness
Maintainability
Verifiability
Expandability
Flexibility
Interoperability
Portability
Reusability

Exit Menu

Figure 5A. Display all factor formulas.

This menu item provides a capability to select all factor formulas for review.

111-14

Factor Formulas

Efficiency 0.1 * ec 0.8 * ep + 0.1 * es
integrity 1.00ss
Reliability 0.4 * ac + 0.3 * am + 0.3 * sl
Suruiuability 0.2 * am + 0.2 * au + 0.2 * di + 0.2 * re + 0.2 * mo
Usability 0.5 * op + 0.5 * tn
Correctness 0.4 * cp + 0.3 cs + 0.3 *tc
Maintainability 0.2 * cs + 0.2 * us + 0.2 * mo + 0.2 * sd + 0.2 * si
Verifiability 0.25 * us + 0.25 * me + 0.25 * sd + 0.25 * si
Expandabillty 0.2 * at + 0.2 * ge + 0 * ur + 0.2 * mo + 0.2 * sd + 0.2 sl
Flenibility 0.25 * ge + 0.25 * me + 0.25 *sd + 0.25 * si
Interoperability 0.2 * cl + 0.2 * fo + 0.2 * Id + 0.2 * sy + 0.2 * me
Portability 0.4 * Id, 0.3 * ma + 0.3 *sd
Reusability 0.2 * ap + 0.I do + 0.I * fs + 0.1 * ge + 0.I * Id + 0.I st +

0.1 * mo + 0.1 * sd

Figure 5B. Factor formulas.

This screen provides a capability to review all factor formulas.

Select a shared Anomaly Management
criterion Consistency

Visibility
Generality
Independence

Modularity
Self Descriptiveness
Simplicity
I • 11 ilIw'I *il *a. i'] i It l~i I[..

Exit Menu

Figure 6A. Select a shared criterion.

This screen provides a capability to change shared criterion values and/or to display them.
In this example, no shared criteria are changed.

111-15

Shared Criteria

Rnomaly Management am 0.85
Consistency cs 0.85
ilsibility us 0.85

Generality ge 0.85
Independence Id 0.85
Modularity mo 0.85
Self Descriptiveness sd 0.85
Simplicity si 0.85

Figure 6B. Shared criterion.

This screen provides a capability to review all shared criteria values.

Select a unique
criterion Autonomy

Distributedness
E f fecti veness- Communi catl on
Effectiveness-Processing
Effectiveness-Storage
Operability
ReconfIgurability
System Accessibility

ralning

Figure 7A. Select a unique criterion.

This screen provides a capability to assign minimum acceptable values to specific
criteria. The remaining criteria are accessed by scrolling.

111-16

Select a unique Augmentabililty
criterion Commonality

Document Accessibility
Functional Overlap
Functional Scope
System Claritg
System Compatlblllt.9'i
Virtuality

lExit Mlenu

Figure 7B. Scrolled from 7A..

In this case, the capability to display all unique criteria values is selected.

Unique Criteria

Accuracy ac 0.00
Alutonomy au 0.00
Distributedness di 0.00
Effectlueness-Communication ec 0.00
Effectiveness-Proces sing ep 0.00
Effectiveness-Storage es 0.00
Operability op 0.00
Reconfigurablllty re 0.00
System Accessibilitg ss 0.00
Training tn 0.00
Completeness Cp 0.00
Traceability ic 0.00
Application Independence ap 0.00
Augmentability at 0.00
Commonality ci 0.00[Document Accessibility do J0
Functional Ouerlap fo 0.00
Functional Scope fs 0.00
System Clarity st 0.00
System Compatibility sy 0.00
Uirtuality ur 0.00

Figure 7C. Unique Criteria.

This screen provides a capability to review all unique criteria values. In this
example, all values are equal to zero Ix~cause no minimum values have been
assigned and CORE has not yet initiated any calcula Lions.

M1-17

All criteria values Efficiency
have now been Integrity
calculated. To see
values of criteria Survivability
associated with a Usability
given factor, select Correctness
a formula. Maintainability

Verifiability
Expandability
Flexibility
Interoperability
Portability
Reusablilty
Exit Menu

Figure 8A. Factor/criteria values.

At this point, CORE has calculated all criteria, factor and formula values. In addition,
positive and negative interrelationships have been taken into account. This screen
provides a capability to select for review the resultant factor values and their associated
criteria values.

reliability (0.75): 0.40 * ac + 0.30 * am + 0.30 * si

accuracy (ac) 0.60
anomaly management (am) 0.85
simplicity (sl) 0.85

Figure 8B. Values for factor Reliability

This screen provides a capability to review the calculated values for factors and wt ' sociated
criteria values.

III-18

Factor Values & Permissible Maxima

Factor Value Maximum

Efficiency 0.90 0.78
Integrity 0.90 0.97
Reliability 0.90 0.98
Suruiuability N/A 0.98
Usability 0.90 1.00
Correctness 0.90 1.00
Maintainabilit 0.90 1.00
Verifiability 0.90 1.00
Expandability 0.80 1.00
Flexibility 0.90 1.00
Interoperability 0.80 1.00
Portability N/A 0.97
Reusability N/R 1.00

Figure 9. Desired vs. achievable factor values.

CORE automatically generates this screen which shows the target factor goals
(Value column) and the maximum achievable goals given the factor/criteria
interrelationships (Maximum column). In this case, the target goal for efficiency
(.90) exceeds the maximum achievable goal (0.78). Thus, this is an inconsistent
goal set.. In order to specify a consistent goal set, a reduction in target goals
must be assigned to one or more factors.

Efficiency - 0.90 which exceeds the permissible maximum
0.78. The chart below lists factors which reduce maximum
efficiency from 1.00 to 0.78 together with their ualues and
the extent to which each contributes to the reduction.

Factor Value Percent

Integrity 0.90 3.00
Reliability 0.90 4.50
Usability 0.90 1.50
Maintainability 0.90 3.00
Verifiability 0.90 3.00
Expandability 0.80 3.00
Flexibility 0.90 1.50
Interoperability 0.80 3.00

Figure 10. Conflicting factors.

CORE automatically generates this screen which shows the negative impact on the efficiency factor
caused by other interrelated factors. The percent column sums to 0.22; 1.00-0.22 = 0.78, the
calculated maximum achievable value for efficiency.

11-19

If the conflict is to be
resolued, at least one Integrity
factor ualue must be Reliability
reduced. You may now Survivability
specify minimum Usability
ualues for any set of Correctness
factors you so choose. Maintainability

Verifiability
Expandability
Flexibility
Interoperabilitg
Portability
Reusability
Display All Factor Minima
Set Minima to Current Factor Values
Exit Menu HO

Figure 11. Conflict resolution choice.

This screen provides the capability to select which factor(s) goals the user is willing to modify
in order to create an achievable factor goal set.

If the conflict is to be
resolued, at least one Integrity
factor ualue must be Reliability
reduced. You may nowspecify minimum

ualues for any set of
factors you so choose. Enter a new value if

you wish:

0.8---- 3

Display All Factor Minima
Set Minima to Current Factor Values[Exit Menu

Figure 12. Factor goal modification.

This screen provides a capability to modify a factor goal. In this example, only the goal for
efficiency is being lowered from the initial goal of 0.90 (excellent) to 0.85 (good).

111-20

Choose an S.earc fo rl lt.r a [o , i
alternative Generate a short report

Generate a long report
Quit

Figure 13. Search for a solution.

Reducing the goal for efficiency was not sufficient to resolve the goal conflicts.
The goal set is still inconsistent; otherwise, the program would generate a
screen indicating that there are no remaining conflicts and the goal set is
consistent. The top menu selection instructs CORE to execute the solution
search algorithms. Eventually, CORE will generate eight candidate solutions,
all of which contain the acceptable value of 0.85 for thcý efficiency factor.

R solution has been found involving factor maintainability.

The chart below shows factor values and permissible maxima after (1)
factors have been set to the minimum values specified earlier, (2) the
value of maintainability has been reduced as shown and (3) all factor
interrelationships have been recomputed.

Factor Value Maximum
Correctness 0.89 1.00
Efficiency 0.85 0.86
Expandability 0.79 1.00
Flexibility 0.89 1.00
Integrity 0.90 0.98
Interoperability 0.80 1.00
Maintainability 0.88 1.00
Reliability 0.89 0.99
Usability 0.90 1.00
Uerifiability 0.88 1 .00

Figure 14. Solution 1.

CORE reports the first alternative: reduce the goal for Maintainability from 0.90 (excellent) to 0.88
(good). Program execution time was five seconds. As a result of interrelationships and shared
criteria, other factor goals have been modified. Compare this goal set with the initial goal set shown
in figure 2B.

III-21

Criteria values for Efficiency
this solution have been integrit
calculated. To see
values of criteria Survivability
associated with a Usability
given factor, select Correctness

a formula. Maintainability

Verifiability
Expandability
Flexibility
Interoperab I i ty
Portability
Reusability
Exit Menu

Figure 15. Underlying criteria values.

This screen provides a capability to review the criteria values factor/criteria values associated
with candidate solutions.

gOK

reliability (0.89): 0.40 * ac + 0.30 * am + 0.30 * sl

accuracy (ac) 0.94
anomaly management (am) 0.85
simplicity (sl) 0.88

Figure 16. Goal values for reliability.

Criteria level information can support the decision making process during comparison of
candidate solutions. This screen shows that the goal for reliability, compared to figure 8B, has
been raised from average to good, due primarily to an increase in the target value for accuracy
from 0.60 to 0.94.

I11-22

Conflict Resolution

alt. A\Try for another solution? 8

Figure 17. Another solution?

CORE indicates an additional solution(s) may be available.

R solution has been found inuoluing factor uerifiabilitg.

The chart below shows factor ualues and permissible maxima after (1)
factors haue been set to the minimum ualues specified earlier, (2) the
ualue of uerifiability has been reduced as shown and (3) all factor
Interrelationships haue been recomputed.

Factor Value Maximum

Correctness 0.90 1.60
Efficiency 0.85 0.86
Expandability 0.79 1.00
Flexibilitg 0.89 1.00
Integrity 0.90 0.98
Interoperability 0.80 1.00
Maintainabilitg 0.88 1.00
Reliability 0.89 0.99
Usability 0.90 1.00
Uerifiabilitg 0.88 1.00

Figure 18. Second solution.

CORE displays a second solution: reduce the target goal for verifiability from excellent to good.
Execution time is 1.5 seconds.

I1-23

R solution has been found inuoluing factor expandability.

The chart below shows factor values and permissible maxima after (1)
factors have been set to the minimum values specified earlier, (2) the
value of expandabilltg has been reduced as shown and (3) all factor
Interrelationships have been recomputed.

Factor Value Maximum

Correctness 0.90 1.00
Efficiencg 0.85 0.86
Expandabilitg 0.78 1.00
Flexibility 0.88 1.00
Integrity 0.90 0.98
Interoperability 0.80 1.00
Maintainability 0.89 1.00
Reliability 0.89 0.99
Usability 0.90 1.00
Verifiability 0.88 1.00

Figure 19. Third solution. (t=2 seconds).

CORE displays a third solution: reduce the target goal for expandability from good to average.

R solution has been found involving factor flexibility. I Ok

The chart below shows factor values and permissible maxima after (1)
factors have been set to the minimum values specified earlier, (2) the
value of flexlibility has been reduced as shown and (3) all factor
Interrelationships have been recomputed.

Factor Value Maximum

Correctness 0.90 1.00
Efficiency 0.85 0.86
EHpandability 0.78 1.00
Flexibility 0.88 1.00
Integritg 0.90 0.98
Interoperability 0.80 1.00
Maintainability 0.89 1.00
Reliability 0.89 0.99
Usability 0.90 1.00
Verifiability 0.89 1.00

Figure 20. Fourth solution. (t=2 seconds).

CORE displays a fourth solution: reduce the target goal for flexibility from excellent to good.

111-24

R solution has been found inuoluing factors integrity and
rellabilit.q.

The chart below shows factor values and permissible maxima after (1)
factors have been set to the minimum values specified earlier, (2) the
values of factors have been reduced as shown and (3) all factor
interrelationships have been recomputed.

Factor Ualue Maximum
Correctness 0.90 1.00
Efficiency 0.85 0.86
Expandability 0.80 1.00
Flexibility 0.90 1.00
Integrity 0.88 0.98
Interoperability 0.80 1.00
Maintainability 0.90 1.00
Reliability 0.88 0.99
Usability 0.90 1.00
Verifiability 0.90 1.00

Figure 21. Fifth solution. (t=3 seconds).
CORE displays a fifth solution: reduce both integrity and reliability from excellent to good.

R solution has been found Involuing factors reliability and
usabilitq.

The chart below shows factor values and permissible maxima after (1)
factors have been set to the minimum values specified earlier, (2) the
values of factors have been reduced as shown and (3) all factor
interrelationships have been recomputed.

Factor Value Maximum

Correctness 0.90 1.00
Efficiency 0.85 0.85
Expandability 0.80 1.00
Flexibility 0.90 1.00
Integrity 0.90 0.98
Interoperability 0.80 1.00
Maintainability 0.90 1.00
Reliability 0.88 0.99
Usability 0.88 1.00
Veriflability 0.90 1.00

Figure 22. Sixth solution. (t=4 seconds).
CORE displays a sixth solution: reduce both reliability and usability from excellent to good.

111-25

A solution has been found involving factors interoperability
and rellabllltg.

The chart below shows factor values and permissible maxima after (1)
factors have been set to the minimum values specified earlier, (2) the
values of factors have been reduced as shown and (3) all factor
interrelationships have been recomputed.

Factor Value Maximum
Correctness 0.90 1.00
Efficiency 0.85 0.86
Expendability 0.79 1.00
Flexibility O.Pfl 1.00
Integrity 0.1 0.98
Interoperability 0.I. 1.00
Maintainability 0.89 1.00
Reliability 0.88 0.99
Usability 0.90 1.00
Verifiability 0.89 1.00

Figure 23. Seventh solution. (t=3 seconds).
CORE displays a seventh solution: reduce reliability to good and interoperability to average.

A solution has been found Involving factors Integrity Ok

Interoperabilltq and usabilitq.

The chart below shows factor values and permissible maxima after (1)
factors have been set to the minimum values specified earlier, (2) the
values of factors have been reduced as shown and (3) all factor
interrelationships have been recomputed.

Factor Value Maximum
Correctness 0.90 1.00
Efficiency 0.85 0.86
Expandabllity 0.80 1.00
Flexibility 0.89 1.00
Integrity 0.88 0.98
Interoperablllty 0.78 1.00
Maintainability 0.90 1.00
Reliability 0.90 0.99
Usability 0.88 1.00
Verifiability 0.89 1.00

Figure 24. Eighth solution. (t=5 seconds).
CORE displays an eighth solution: reduce both integrity and usability from excellent to good, and
reduce interoperability from good to average.

111-26

Conflict Resolution

ChooD
site OS No more solutions.

Figure 25. No more solutions. (t=15 seconds).

CORE indicates that there are no more solution candidates based on the
initial starting conditions.

Choose an Search for a resolution
alternatlue Generate a short report

rQuit,

Figure 26. Reporting options.

This screen provides a capability to request a summary report of all solutions

generated at two levels of detail.

Choose an Search for a resolution
alternatlue Generate a short report

Generate a long report

Figure 27. Quit CORE.

I1H-27

CONFLICT RESOLUTION REPORT

Snapshot of the data base at the time the conflict was discovered,
and just after the user set quality factor minima.

Quality Factors and Values

Factor Value Maximum

correctness 0.90 1.00
efficiency 0.85 0.78
expandability 0.80 1.00
flexibility 0.90 1.00
integrity 0.90 0.97
interoperability 0.80 1.00
maintainability 0.90 1.00
reliability 0.90 0.98
usability 0.90 1.00
verifiability 0.90 1.00

Quality Factors and Formulas

correctness = 0.40*cp + 0.30*cs + 0.30*tc
efficiency = 0.10*ec + 0.80*ep + 0.10*es
expandability - 0.20*at + 0.20*ge + 0.00*vr + 0.20*mo +

0.20*sd + 0.20*si
flexibility = 0.25*ge + 0.25*mo + 0.25*sd + 0.25*si
integrity = 1.00*ss
interoperability 0.20*cl + 0.20*fo + 0.20*id + 0.20*sy +

0.20*mo
maintainability = 0.20*cs + 0.20*vs + 0.20*mo + 0.20*sd +

0.20*si
reliability = 0.40*ac + 0.30*am + 0.30*si
usability = 0.50*op + 0.50*tn
verifiability = 0.25*vs + 0.25*mo + 0.25*sd + 0.25*si

111-28

Shared Criteria, Acronyms and Values

Criterion Acronym Value

anomaly management am 0.85
consistency cs 0.90
visibility vs 0.90
generality ge 0.90
independence id 0.85
modularity mo 0.90
self descriptiveness sd 0.90
simplicity si 0.90

Unique Criteria, Acronyms and Values

Criterion Acronym Value

accuracy ac 0.94
autonomy au 0.00
distributedness di 0.00
effectiveness-communication ec 0.85
effe~ctiveness-processing ep 0.85
effectiveness-storage es 0.85
operability op 0.90
reconfigurability re 0.00
system accessibility ss 0.90
training tn 0.90
completeness cp 0.90
traceability tc 0.90
application independence ap 0.00
augmentability at 0.40
commonality cl 0.75
document accessibility do 0.00
functional overlap fo 0.75
functional scope fs 0.00
system clarity st 0.00
system compatibility sy 0.75
virtuality vr 0.40

111-29

The following solutions were discovered.

Solution 1

Lower the value of maintainability to Good.
After recalculating factor interrelationships, the data base
will look like this.

Quality Factors and Values

Factor Value Maximum

correctness 0.89 1.00
reliability 0.89 0.99
efficiency 0.85 0.86
integrity 0.90 0.98
usability 0.90 1.00
maintainability 0.88 1.00
verifiability 0.88 1.00
expandability 0.79 1.00
flexibility 0.89 1.00
interoperability 0.80 1.00

Solution 2

Lower the value of verifiability to Good.
After recalculating factor interrelationships, the data base
will look like this.

Quality Factors and Values

Factor Value Maximum

correctness 0.90 1.00
reliability 0.89 0.99
efficiency 0.85 0.86
integrity 0.90 0.98
usability 0.90 1.00
maintainability 0.88 1.00
verifiability 0.88 1.00
expandability 0.79 1.00
flexibility 0.89 1.00
interoperability 0.80 1.00

111-30

Solution 3

Lower the value of expandability to Av-rage.
After recalculating factor interrelatioitships, the data base
will look like chis.

Quality Factors and Values

Factor Value Maximum

correctness 0.90 1.00
reliability 0.89 0.99
efficiency 0.85 0.86
integrity 0.90 0.98
usability 0.90 1.00
maintainability 0.89 1.00
verifiability 0.88 1.00
expandability 0.78 1.00
flexibility 0.88 1.00
interoperability 0.80 1.00

Solution 4

Lower the value of flexibility to Good.
After recalculating factor interrelationships, the data base
will look like this.

Quality Factors and Values

Factor Value Maximum

correctness 0.90 1.00
reliability 0.89 0.99
efficiency 0.85 0.86
integrity 0.90 0.98
usability 0.90 1.00
maintainability 0.89 1.00
verifiability 0.89 1.00
expandability 0.78 1.00
flexibility 0.88 1.00
interoperability 0.80 1.00

111-31

Solution 5

Lower the values of
integrity to Good,
reliability to Good

After recalculating factor interrelationships, the data base
will look like this.

Quality Factors and Values

Factor Value Maximum

correctness 0.90 1.00
reliability 0.88 0.99
efficiency 0.85 0.86
integrity 0.88 0.98
usability 0.90 1.00
maintainability 0.90 1.00
verifiability 0.90 1.00
expandability 0.80 1.00
flexibility 0.90 1.00
interoperability 0.80 1.00

Solution 6

Lower the values of
reliability to Good,
usability to Good

After recalculating factor interrelationships, the data base
will look like this.

Quality Factors and Values

Factor Value Maximum

correctness 0.90 1.00
relialility 0.88 0.99
efficiency 0.85 0.85
integrity 0.90 0.98
usability 0.88 1.00
maintainability 0.90 1.00
verifiability 0.90 1.00
expandability 0.80 1.00
flexibility 0.90 1.00
interoperability 0.80 1.00

HI-32

Solution 7

Lower the values of
interoperability to Average,
reliability to Good

After recalculating factor interrelationships, the data base

will look like this.

Quality Factors and Values

Factor Value Maximum

correctness 0.90 1.00
reliability 0.88 0.99
efficiency 0.85 0.86
integrity 0.90 0.98
usability 0.90 1.00
maintainability 0.89 1.00
verifiability 0.89 1.00
expandability 0.79 1.00
flexibility 0.89 1.00
interoperability 0.78 1.00

Solution 8

Lower the values of
integrity to Good,
interoperability to Average,
usability to Good

After recalculating factor interrelationships, the data base
will look like this.

Quality Factors and Values

Factor Value Maximum

correctness 0.90 1.00
reliability 0.90 0.99
efficiency 0.85 0.86
integrity 0.88 0.98
usability 0.88 1.00
maintainability 0.90 1.00
verifiability 0.89 1.00
expandability 0.80 1.00
flexibility 0.89 1.00
interoperability 0.78 1.00

No more solutions were found.

111-33

5 RECOMMENDED ENHANCEMENTS to CORE

CORE was developed as a standalone, proof-of-concept for extending the capabilities of
the Assistant for Specifying the Quality of Software. During the informal testing of CORE
on a range of examples, several priority enhancements were identified:

(1). Present information in a graphics format. Virtually all CORE output is now presented in
textual and tabular formats. In general, determine good graphics representations effective for
displaying trade off analysis information. Incorporate user-modifiable smart decision rules to
provide additional support for evaluation of candidate solutions.

(2). Change the logic governing the fixed presentation of interface screens to provide a
capability to backtrack to prior screens and thereby invoke CORE capabilities as suggested
by intermediate results.

(3). Present information valuable to software developers. CORE processes at the criteria
level. In the past, all emphasis on uses of the Software Quality Methodology have focused
setting quality goals at the factor level. A given {quality goals) has implications for the
development staff; i.e, they will be required to develop software which meets specified
criteria scores. Inputs from the development staff can serve as additional information during
the process of final {quality goals) determination.

(4). Implement smart search algorithms which will quickly eliminate infeasible solutions and
will discover a greater number of solutions. In the current version, CORE finds candidate
solutions to inconsistent goal factor sets by selectively reducing factor goals only once by a
fixed amount equal to 0.02.

(5). Incorporate fuzzy logic to provide an enhanced capability to specify degrees of desired
factor goal levels.

(6). Implement a capability to conduct cost impact studies of the alternatives generated in the
technical feasibility stage.

(7). Review the current literature on multiobjective/multiattribute optimization theory.
Evaluate recent algorithm and concept developments for possible use in CORE.

IH-34

SECTION IV

REFERENCES

[1] Jeffrey A. Lasky and Alan R. Kaminsky, and Wade Boaz, "Software Quality
Measurement Methodology Enhancements Study Results, "Final Technical Report,
RL-TR-89-317, January 1990.

[2] Jeffrey A. Lasky and Michael J. Lutz, "Software Quality Methodology Integration
Study Results, Final Technical Report, RL-TR-92-79, May, 1992.

[3] Larry Kahn and Steve Keller, "The Assistant for Specifying the Quality of Software
(ASQS) Operational Concept Document, RADC-TR-90-195 Vol. I (of two), Sept,
1990.

[4] T.P. Bowen , G. B. Wigle, and J. T. Tsai, "Specification of Software Quality
Attributes", Volumes I, II, and III, RADC-TR-85-37, February, 1985.

[5] Ruben Prieto-Diaz and Guillermo Arango (eds.), Domain Analysis and Software
Systems Modeling, IEEE Computer Society Press, 1991.

[6] Douglas Schaus, "Assistant for Specifying the Quality of Software (ASQS), Mission
Area Analysis, RADC-TR-90-348, December 1990.

[7] Tarek Abdel-Hamid and Stuart E. Madnick, Software Project Dynamics: An Integrated
Approach, Prentice-Hall, 1991.

[8] Chien-Ching Cho, "A System Dynamics Model of the Software Development Process,"
MTR-10588, MITRE Corporation, May, 1989.

[9] Herb Krasner, et.al., "Lessons Learned from a Software Process Modeling System,"
Communications of the ACM, (35,9), September 1992, pp. 91-100.

[10] Bill Curtis, Marc I. Kellner and Jim Over, "Process Modeling," Communications of the
ACM, (35,9), September 1992, pp. 75-90.

[11] R.H. Cobb, A. Kouchakdjian, and H.D. Mills, "The Cleanroom Engineering software
development process", IBM STARS IR70/E CDRL 7001, by Software Engineering
Technology, Vero Beach FL and IBM Federal Sector Company, Gaithersburg, MD,
February 28, 1991.

[12] R. A. Radice, et.al., "A Program Process Architecture," IBM Systems Journal, (24,2),
1985, pp. 79-90.

[13] Patricia Pierce, Richard Hartley, and Sullen Worrells, "Software Quality Measurement
Demonstration Project II", RADC-TR-87-164, October, 1987.

[14] Larry Kahn and Steve Keller, "The Assistant for Specifying the Quality of Software
(ASQS) User's Manual, RADC-TR-90-195 Vol II (of two), Sept, 1990.

*U.S. GOVERNMENT PRINTING OFFICE: 1993-710-09-'

IV-1

MISSION

OF

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-

search, development, test, and technology transition in support of Air
Force Command, Control, Communications and Intelligence (C31) activities

for all Air Force platforms. It also executes selected acquisition programs
in several areas of expertise. Technical and engineering support within
areas of competence is provided to ESD Program Offices (POs) and other

ESD elements to perform effective acquisition of C31 systems. In addition,

Rome Laboratory's technology supports other AFSC Product Divisions, the
Air Force user community, and other DOD and non-DOD agencies. Rome
Laboratory maintains technical competence and research programs in areas
including, but not limited to, communications, command and control, battle

management, intelligence information processing, computational sciences
and software producibility, wide area surveillance/sensors, signal proces-
sing, solid state sciences, photonics, electromagnetic technology, super-

conductivity, and electronic reliability/maintainability and testability.

